Software metadata
BioHackOutcomes
Get JSON-LD | Visit SoftwareSourceCode
name | BioHackOutcomes | ||||||||
description | BioHackathon project to define and follow up BioHackathon projects. | ||||||||
url | https://github.com/zbmed-semtec/BioHackOutcomes | ||||||||
author |
|
||||||||
license |
|
||||||||
citation |
|
||||||||
codeRepository | https://github.com/zbmed-semtec/BioHackOutcomes | ||||||||
programmingLanguage |
|
||||||||
keywords |
|
Metadata model for machine-actionable Software Management Plans
Get JSON-LD | Visit SoftwareSourceCode
name | Metadata model for machine-actionable Software Management Plans | ||||||||||||||||||||||||
description | This project corresponds to an extension of the Research Data Alliance (RDA) machine-actionable Data Management Plan (maDMP) application profile and its corresponding DMP Common Standard ontology (DCSO) in order to cover the case of ELIXIR Software Management Plans (SMPs). Similar to DMPs, SMPs help formalize a set of structures and goals that ensure the software is accessible and reusable in the short, medium and long term. Although targeting the life sciences community, most of the elements of the ELIXIR SMPs are domain agnostic and could be used by other communities as well. DMPs and SMPs can be presented as text-based documents, sometimes guided by a set of questions corresponding to key points related to the lifecycle of either data or software. The RDA DMP Common Standards working group defined a maDMP to overcome limitations of text-based documents. We propose a similar path for the ELIXIR SMPs so they turn into machine-actionable SMPs (maSMPs). | ||||||||||||||||||||||||
url | https://github.com/zbmed-semtec/maSMPs | ||||||||||||||||||||||||
author |
|
||||||||||||||||||||||||
license |
|
||||||||||||||||||||||||
citation | Giraldo O, Geist L, Quiñones N, Solanki D, Rebholz-Schuhmann D, Castro LJ. machine-actionable Software Management Plan Ontology (maSMP Ontology). Zenodo; 2023. doi:10.5281/zenodo.8089518 | ||||||||||||||||||||||||
codeRepository | https://github.com/zbmed-semtec/maSMPs | ||||||||||||||||||||||||
programmingLanguage |
|
||||||||||||||||||||||||
keywords |
|
Mowl-graph2doc2vec
Get JSON-LD | Visit SoftwareSourceCode
name | Mowl-graph2doc2vec | ||||||||||||||||||||||||
description | A repository to explore the use of ontology-based graphs (generated with MOWL) as background knowledge for scientific articles similarity. | ||||||||||||||||||||||||
url | https://github.com/zbmed-semtec/mowl-graph2doc2vec | ||||||||||||||||||||||||
author |
|
||||||||||||||||||||||||
license | |||||||||||||||||||||||||
codeRepository | https://github.com/zbmed-semtec/mowl-graph2doc2vec | ||||||||||||||||||||||||
programmingLanguage |
|
||||||||||||||||||||||||
keywords |
|
Protein-function-embeddings-thesis
Get JSON-LD | Visit SoftwareSourceCode
name | Protein-function-embeddings-thesis | ||||||||||||
description | This thesis explores how information for protein functions can be exploited through embeddings so that the produced information can be used to improve protein function annotations. The underlying hypothesis here is that any pair of proteins with high sequence similarity will also share a similar biological function which would be reflected by the corresponding protein embeddings. The comparion and evaluation of this is done using two text-driven embedding approaches: Word2doc2Vec and Hybrid-Word2doc2Vec. | ||||||||||||
url | https://github.com/zbmed-semtec/protein-function-embeddings-thesis | ||||||||||||
author |
|
||||||||||||
license | |||||||||||||
citation |
|
||||||||||||
codeRepository | https://github.com/zbmed-semtec/protein-function-embeddings-thesis | ||||||||||||
programmingLanguage |
|
||||||||||||
keywords |
|
Topic-categorization-system
Get JSON-LD | Visit SoftwareSourceCode
name | Topic-categorization-system | ||||||||||||||||||||
description | Topic categorization on scientific papers to improve information retrieval in the biomedical domain. | ||||||||||||||||||||
url | https://github.com/zbmed-semtec/topic-categorization-system | ||||||||||||||||||||
author |
|
||||||||||||||||||||
license | |||||||||||||||||||||
citation |
|
||||||||||||||||||||
codeRepository | https://github.com/zbmed-semtec/topic-categorization-system | ||||||||||||||||||||
programmingLanguage |
|
||||||||||||||||||||
keywords |
|
TREC-doc-2-doc-relevance
Get JSON-LD | Visit SoftwareSourceCode
name | TREC-doc-2-doc-relevance | ||||||||||||||||||||||||||||
description | The code, data and docs at this repo aim at facilitating the creation of a doc-2-doc relevance assessment on PMIDs used in the TREC 2005 Genomics track. A doc-2-doc relevance assessment takes one document as reference and assess a second document regarding its relevance to the reference one. This doc-2-doc collection will be used to evaluate the doc-2-doc recommendations approaches that we are working on. | ||||||||||||||||||||||||||||
url | https://github.com/zbmed-semtec/TREC-doc-2-doc-relevance | ||||||||||||||||||||||||||||
author |
|
||||||||||||||||||||||||||||
license |
|
||||||||||||||||||||||||||||
citation | Talha M, Geist L, Fellerhof T, Ravinder R, Giraldo O, Rebholz-Schuhmann D, and Castro LJ. (2022). TREC-doc-2-doc-relevance assessment interface (1.0.0). Zenodo. https://doi.org/10.5281/zenodo.7341391 | ||||||||||||||||||||||||||||
codeRepository | https://github.com/zbmed-semtec/TREC-doc-2-doc-relevance | ||||||||||||||||||||||||||||
programmingLanguage |
|
||||||||||||||||||||||||||||
keywords |
|
Zbmed-semtec.github.io
Get JSON-LD | Visit SoftwareSourceCode
name | Zbmed-semtec.github.io | ||||||||
description | We are a multidisciplinary Research and Development team combining semantic technologies and data analytics. We work on the development of softare components and services to support and improve research on information retrieval, data science and literature-based knowledge discovery with a particular focus on reproducibility. Our areas of application include the evaluation of experimental retrieval and recommendation systems, practical support to FAIR+R principles for software and data science, and data analytics from the combination of ontologies and literature-extracted data in the Life Sciences domain. | ||||||||
url | https://github.com/zbmed-semtec/zbmed-semtec.github.io | ||||||||
author |
|
||||||||
license |
|
||||||||
codeRepository | https://github.com/zbmed-semtec/zbmed-semtec.github.io | ||||||||
programmingLanguage |
|
||||||||
keywords |
|